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Abstract: Unambiguous synthetic routes to elicitor-active P-D-glucohexaoside as well 
as P-D-glucononaoside were described in a stereocontrolled manner. Minimum 
structure required for the elicitor activity is P-D-glucohexaoside. 

Plants respond to invasive microbes at the site of infection by the accumulation 

of phytoalexins2, the biosynthesis of which is induced by molecules called elicitors3. 
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In 1984, Sharp and co-workers4 purified and characterized an elicitor-active 8-D- 

glucohexaosyl glucitol 1 after partial hydrolysis of the mycelial walls of the fungal 

pathogen phytophthora megasperma J sp. glycinea. The proposed structure 1 was 
confirmed by Garegg and co-workers 5 through the unambiguous synthesis of B-D- 

glucohepatose 2 that had elicitor-activity equivalent to that of natural product. As 

part of our experiments directed toward the elucidation of structure-activity 
relationship of these 8-D-glucooligoses, we now describe the unambiguous synthesis 

of P-D-glucohexaoside 3 and its higher homologue glucononaoside 4, which 

eventually showed the minimum structural requirement for the phytoalexin elicitor- 
activity is glucohexaoside 3. 

A retrosynthetic consideration of the targets 3 and 4 led us to design a B-D- 

glucotriosyl donor 5 and a glucotriosyl acceptor 6 as two key intermediates which 
were prepared in a straightforward manner. Glycosylation of a glucosyl acceptor 11 
(83% from 106, I Bu2SnO. 2 MeBzCl) with a donor 87 (87% from 7, MBzCl in Py) in 

the presence of MeOTf8 and powdered molecular sieves 4A (MS4A) in CH2C12 gave 

87% of 12, which was hydrolysed to diol 13 (90%, 7:3 AcOH-H20 at 80”). Methyl 

thioglucoside 7 was converted to a glucosyl donor 9 in 4 steps (I TrCl. Py, 2 MeBzCl, 
3 8:2 AcOH-H20,4 (ClCH2C0)20, DMAP in Py, overall 49%). MeOTf-MS4A Promoted 

glycosylation of 13 with 9 gave 80% of 14 which was further converted into a 
glycotriosyl donor 5 via 15 and 16 in 3 steps (I Ac20 in Py, 2 PdC12-AcONa-AcOH- 
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H209.3 C13CCN. DBU in Cl2CH210, overall 26%). Another key intermediate 6 was 

readily prepared from 15 in 93% by treatment with NH2CSNH2 in EtOHl l. 

Crucial coupling between 5 and 6 was achieved in the presence of BF3*OEt2 and 
MS AW-300 in (CH2C1)2 to give 74% of 17 which was quantitatively deprotected by 

NaOMe in MeOH and purified by Sephadex GlO in H20 to give 3. On the other hand, 

selective deprotection of 17 afforded 70% of a glucohexaosyl acceptor 18 which was 

again glycosylated with 5 under the same’ condition as above to give 18812 of 19. 
Deacylation of 19 in NaOMe-MeOH afforded 4. Both synthetic 8-D-glucooligosides 3 

and 4 have elicitor-activity equivalent13 to that of 1, hence glucohexaoside 3 is at 

the moment a mininum necessary unit for the elicitor-activity. In addition, it is to be 
noted that the 8-D configuration at C-11 in the original elicitor molecule 1 is not 

required for the elicitor-activity. It may be postulated that in the molecule 3 

D-glucosyl residues I, 2 and 4 play roles as the scaffolding while the residues 3,5, 

and 6 as the biological signals which interact with a putative receptor protein. Based 

on this line of reasoning, further modification of structure 3 is under current 

investigation. 

In summary, an unambiguous synthetic routes to the targets 3 and 4 were 

developed and the minimun structural requirement for the elicitor-activity is now 

regarded as a glucohexaoside 3. 
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